Lecture 2
Dehn surgery

2.1 Knots and links in 3-manifqlds

A finite collection of smoothly embedded disjoint closed curves in. a closed orientable
3-manifold M is called a link. A one-component link is called a knot. We will not
distinguish between equivalent knots and links: two links, £ and £’, in M are said to
be equivalent if there is a smooth. orientation preserving automorphism 2: M — M
such that #(L£) = £’. In case the links have two or more components, we also assign
a fixed ordering of the components and require that & respect the orderings. Every link
£ C M can be thickened to get its tubular neighborhood N (£) which is a collection
of smoothly embedded disjoint solid tori, D? x S!, one for each link component, whose
cores {0} x S! form the link .£.

Links in 3 = R3 U {00} can be thought of as links in R3. The requirement that
each of the curves of a link be smoothly embedded avoids pathological examples like

the one pictured in Figure 2.1.

Figure 2.1

Let £ be a link in R? represented by a collection of disjoint smoothly embedded
curves. Let P be a plane and p: R® — P the orthogonal projection. We say that P
is regular for the link .£ provided that every p~1(x), x € P, intersects £ in 0, 1 or 2
points and the Jacobian dy p has rank 1 at every intersection point y € p~1(x). Every
link admits a regular projection, see Crowell-Fox [33]. Thus links in $3 = R3 U {00}
are often described by their regular projections, and drawn as smooth curves in R? with

marked undercrossings and overcrossings at each double point.

Any knot in s3 equivalent to the knot (cos ¢, sinz,0), 0 < t < 2n, is called a trivial
knot or an unknot.
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2.2 Surgery on links in $°

Let k be a knot in a closed orientable 3-manifold M, and N (k) its tubular neighborhood.
By cutting the manifold M open along the 2-torus d N (k) we get two manifolds — one
is the knot exterior K which is the closure of M \ N(k), and the other is the solid
torus N (k) which we will identify with the standard solid torus D? x S!. Thus K is a
manifold with boundary 8K = T2 and M = K U (D? x S!). One can use an arbitrary
homeomorphism k: dD? x S! — 3K to glue D? x S! back in K. The space we obtain
by this construction, @ = K Uy, (D? x §1), is a closed orientable 3-manifold. We say
that Q is obtained from M by surgery along k.

The manifold Q depends on the choice of homeomorphism 4. In fact, the manifold
Q is completely determined by the image under % of the meridian dD? x {#} of the
solid torus D? x S!, i.e. by the curve ¢ = h(3 D? x {x}) on the boundary of K. To see
this, one simply repeats the argument that used the Figure 1.10 from Lecture 1.

If M = S then a curve on 3K is given, up to isotopy, by a pair of relatively prime
integers (p, g¢). The construction is as follows. The space K has integral homology
groups Hy(K) = H|(K) = Z and H;(K) = 0if i > 2. Any meridian of N (k)
represents a generator of Hj (K); this is a curve on 0 K which we call m. Up to isotopy
of N(k), there is a unique longitude which is homologically trivial in K; this gives
another curve, ¢, on K. These two form a basis for H; (0 K) which is unique up to
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longitude to distinguish it from the longitude defined in Lecture 1.

We fix the orientations as follows. Choose the standard orientation on $° = R3 U
{oo}; it induces an orientation on K. We choose directions on the curves m and £ so
that the triple (m, £, n) is positively oriented. Here, n is a normal vector to K pointing
inside K, see Figure 2.2.

>

Figure 2.2

Any simple closed curve ¢ on 3K is now isotopic to a curve of the form ¢ =
p-m+q-£. The pairs (p, g) and (— p, —q) define the same curve c¢ since the orientation
of ¢ is of no importance to us. One can conveniently think of a pair (p, q) as a reduced
fraction p/q. Then there is a one-to-one correspondence between the set of isotopy
classes of non-trivial simple closed curves on the torus 4K and the set of reduced
fractions p/q. This set should be completed by 1/0 = oo, which corresponds to the
meridian m. The result of 1/0-surgery on any knot k C §° is again §°.
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. Surgeries of the type described above are called rational. A surgery is called integral
if g = £1. Similarly, one defines rational and integral surgeries along a link £ C M:
the surgery along each link component should be rational, respectively, integral. In
general, surgery along a knot k C M cannot be described by a rational number since
there is no canonical choice of the longitude (such a choice exists, however, for a
homology 3-sphere M, see Section 7.5). Nevertheless, the concept of integral surgery
still makes sense: the curve dD? x {*} on D? x S! should be attached to a curve on
0K running exactly once along a longitude.

Theorem 2.1 (Lickorish [95] and Wallace [145]). Every closed orientable 3-manifold
M can be obtained from S® by an integral surgery on a link £ C S°.

Lemma 2.2, Let hy,hy: 0H — dH' be homeomorphisms of the surfaces of two han-
dlebodies such that hy = h)t. where 1 is a twist along a simple closed curve c C 9H,.
Then the manifold M, = H Uy, H' is obtained from the manifold M\ = H Uy, H' by
anintegral surgery along a knot k C M, isotopic to the image of c.

Proof of Lemma 2.2. We push the curve ¢ inside the handlebody H to getaknotk C H.
Let N (k) be its tubular neighborhood, and A = S! x I an annulus connecting ¢ and
oN (k), see Figqre 2.3.

_Figure 2.3

Letp: H\ N(k) - H\N(k)be ahomeomorphism which cuts the space H \ N (k)
open along the annulus A, twists one of the rims by 360°, and glues it back in. The
restriction of the homeomorphism ¢ to d H is the twist 7. while its restriction to dN (k)
is a twist along the longitude £ = AN N (k) of theknot k. Let M] = (H\ N (k)) Uy, H',
i =1, 2. The formula

o) = { o(x), ifx e H\N(), e

x, ifxe H,

defines a homeomorphism of M), to M|. The conditions 21 = k7 and ¢lyn, assure
that the two parts of the formula (2.1) agree on the boundary, see Figure 2.4.
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N\ H(k)

N\ H(k)

Figure 2.4

Thus, if we remove the solid tori corresponding to N (k) from the manifolds M; and
M,, they become homeomorphic. This implies that M> is obtained from M, by surgery
along the knot k. Since ® maps the meridian m of the torus d N (k) to the curve m + £,
this surgery is integral. (|

Proof of Theorem 2.1. Every manifold M can be represented as M = H Uy, H', where
H and H' are handlebodies of genus g, and k, is an orientation reversing homeo-
morphism of their boundaries. Similarly, > = H U,, H'. Therefore, hy by is an
orientation preserving homeomorphism so k., 'hy = 1,7, ... T, Where 7, is a twist
along a curve ¢;. According to Lemma 2.2, multiplying the gluing homeomorphism
by a Dehn twist has the same effect as performing an integral surgery along a knot. A
sequence of such multiplications gives a sequence of surgeries on knots, or a surgery
on a link. (|

Thus, any closed orientable 3-manifold can be obtained by an integral surgery along
alink £ c S3. It should be emphasized again that the result of the surgery depends
not only on £ but also on the choice of simple closed curves in the boundary N (k) of
each component & of the link .£. As we have seen, for an integral surgery, such a curve
is uniquely determined by an integer. A choice of an integer for each component of £
is called a framing of £. A link £ with a fixed framing will be called a framed link.

2.3 Surgery description of lens spaces and
Seifert manifolds

Let p > 2. The lens space L(p, 1) can be obtained by gluing together two solid tori by
the homeomorphism
-1 0
p 1

which attaches the meridian w; of the first torus to the curve — 2 + p - A2 on the second,
see Figure 2.5 where p = 3.
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(- &

Figure 2.5

If we turn the second solid torus inside out and think of it as a trivial knot exterior,
the meridian p; will be attached to the curve £ — p - m. Thus L(p, 1) has surgery
description shown in Figure 2.6.

—pP

Figure 2.6

Similarly, any L(p, é]) will be a rational surgery on an unknotted circle with framing
p/q. To produce L(p, q) by an integral surgery, replace one of the solid tori ! x D?
by S 1 x A2 where A? is an annulus. The construction above which produced L(p, 1),
will then give a manifold with boundary a torus. The latter can be pictured as a surgered
solid torus as shown in Figure 2.7 (L(p, 1) can be obtained from it by gluing in a solid
torus by the identity map).

=) ~CD.

Figure 2.7

Repeat the construction with p replaced by any integer g relatively prime to p. Glue
these two surgered solid tori together along their boundary by the homeomorphism
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We obtain $3 surgered along the link pictured in Figure 2.7. On the other hand,

-1 0 0 1\(-10\ ([ —-¢g -1
p 1 10 qg 1) \pg—1 p )’
therefore, the link in Figure 2.7 represents L(pq — 1, q).
Theorem 2.3. Any lens space L(p, q) has a surgery description as in Figure 2.8, where

p/q = [x1, ..., x4] is a continued fraction decomposition,
1
[xla°'-9xn]=x1 - 1 (22)
x —
2 1
Xn
—X] —X2 —X3 —X4 —Xp—1 —Xn
Flgure 2.8

Proof. The construction for L(pg — 1, ¢) can be repeated sufficiently many times to
produce the link in Figure 2.8. The only thing we need to check is that, if p/q =
[x1,...,xn], then

(7 )=(F O D)7 9)

for some r and s. This is true for n = 1 and n = 2 because

pq —

1
Z=1p] and =[p. ql.

By induction, suppose that p’/q’ = [x3, ..., x,], then
-1 0 01 -q s\ _ -p —r’
x 1 1 0 p ) \xp—-q xir'+s )’

xip —a ’ 1
l,—q—=x1—-q—,=x1————
)4 D [x2,...,xn]

so that
= [X1, e ey xn]\'-

Since every rational number has a continued fraction of the form described, we are
finished. O
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Figure 2.9

The link in Figure 2.8 is usually drawn as the weighted graph shown in Figure 2.9
where each vertex corresponds to an unknot, and two vertices are connected by an edge
if the corresponding unknots are linked.

Example. The lens space L(7, 3) is a surgery on each of the following links in Fig-
ure 2.10 according to the continued fraction decompositions 7/3 = [3,2,2]and 7/3 =
[2, -3].

~3 ) 2 U 3

- - e ————e———@

Figure 2.10

A Seifert manifold M((a1, 1), ..., (an, by)) has a rational surgery description
shown in Figure 2.11. This description fixes an orientation of the manifold M. From
now on, we will refer to M((a1, b1), ..., (@, b)) as an oriented 3-manifold with this
particular orientation. ‘ ‘

N
ay /b OO az /by an [bn

Figure 2.11

With the graph notations as above, the manifold M ((ay, b), ..., (an, by)) can be
described as shown in Figure 2.12 where a;/b; = [x;1, ..., Xim;].

x11 x12 Xim,
g - — —e

X21 X22 X2my
- - —_ —

0
AN

o — -

Xn1 Xn2 ; Xnmy,
. - —
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Example. The nianifold M((3, 2), (4, —1), (5, —2)) has the surgery description shown

in Figure 2.13.
2 . 0 -2
® —— >~— --
T —4

Figure 2.13

2.4 Surgery and 4-manifolds

An oriented compact smooth 4-dimensional manifold W is called an (oriented) cobor-
dism between two closed oriented 3-manifolds M; and M, if 9W = — M| U M, where
— M, stands for M, with reversed orientation. If M; is empty, one says that M, is
cobordani to zero. J

There is a closed relationship between surgeries on framed links and cobordisms.
Let k be a knot in M with an (integral) framing defined by a curve ¢ in 3K such that
[c] = [k] € Hi(N(k)). Let a be a point on the boundary of D?. Then there exists a
unique (up to isotopy) diffeomorphism 4 : S! x D2 — N(k) such that 2(S! x {0}) =k
and h(S! x {a}) = c. Glue a 2-handle D? x D? to the 4-manifold M x [0, 1] with the
help of the embedding h: S! x D? = (8D?) x D* - N(k) C M = M x {1}. What
we get is a 4-manifold W = (M x [0, 1]) U;, (D? x D?). Itis called the trace of surgery
onk.

M x {1}

N(K)

M x {0}

Figure 2.14

Theorem 2.4. The manifold W is a cobordism between M and the manifold obtained
from M by surgery on k.

Proof. The boundary of W consists of two components. One of these, namely M x {0},
is homeomorphic to M. Gluing D? x D? to M x [0, 1] changes M x {1} as follows:
the solid torus N(K) = h(dD? x D?) is removed and replaced by the solid torus
D? x 3D? (which is a “free” portion of the boundary 3(D? x D?)). Note that the
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meridian dD? x {a} is identified with the curve ¢ = h(3D? x {a}). This means that
an integral surgery is performied on M x {1} along k with the framing given by c.
Formally speaking, the manifold W is not smooth as it has “corners” after gluing in
the handle. However, there is a canonical way to provide W with the structure of a

smooth manifold. One “smoothes out” the corners using techniques described, e.g., in
Chapter 1 of Conner-Floyd [32]. O

Corollary 2.5. Any closed oriented 3-manifold is cobordant to zero.

Proof. Any closed oriented 3-manifold M can be obtained by an integral surgery on
a link in S3. Theorem 2.4 then implies that M is cobordant to §* which, in its turn,
bounds a 4-ball. Therefore, M is cobordant to zero. O

Example. Forany p, thelens space L( p, 1) is a surgery on the link shown in Figure 2.6.
The corresponding 4-manifold &g (‘ﬁ' %’ D?%) with boundary d E p=L(p, 1)
can be thought of as a union of D4 = D2 x D? and a 2-handle D? x D? glued along
S x D? c 9(D? x D?) by a certain homeomorphism #: S! x D? — §' x D2. The
homeomorphism & attaches S! x {0} to S* x {0} and twists a copy of D? p times in the
counter-clockwise direction as one completes one circle along S!. Schematically, this
can be pictured as in Figure 2.15.

D% = D% x D?

Figure 2.15

The central discs of both handles D? x D? are glued along S! to produce a copy of
S? inside E ..

Example. Forevery p, the manifold E, is a locally trivial bundle over 52 with the fiber
D?. The manifold Ej is a trivial bundle, i.e. a product Eg = $2 x D2, Its boundary is
dEg = 3(S%? x D?) = 82 x S\.

Example. The manifold E; can be identified with a punctured complex projective plane
CP2\ D* sothat 3E; = 3(CP2\ D*) = §3. Before we prove this, we recall that, by
definition,

CP? ={(z0,71,22) € C*\ 0}/C*

where C* is the multiplicative group of non-zero complex numbers acting by the rule
(zo, 21, 22) V> (c20, €21, €Z2), ¢ € C*. The equivalence class of (zo, 21, z2) is usually
denoted by [zo : 21 : 22].
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The complex projective plane C P2 is covered by three coordinate charts U; = {z; #
0}, i =0, 1,2, each of which is homeomorphic to C? via homeomorphisms

ho: Up — C2, [z0 : 21 : 221 = (21/z0, 22/20).
hi: Uy - C?, [z0 : 21 : 22] = (20/21, 22/21),
hy: Uy — C2, [zo : 21 : z2] = (20/22. 21/22)-

The charts Up and U together cover all of CP? but the point [0 : O : 1]. Therefore,
UoU Uy is apunctured CP2. Both ho(UpNU1) and hy (UgN U7 ) as subsets of C2 consist
of all points (z, w) with z # 0 so that ho(Ug N U;) = hi(Ug N Uy) = S! x Ry x C.
The gluing map

h"—l -
h1(Uo N UL —> Up N Uy 28 ho(Uo N UY)

is given by the formula (z, w) — (z~!, wz~!). The points (z, w) with |z| > 1 are
mapped by this map to the points (z, w) with |z| < 1. Thus one can truncate k(Up)
by the condition |z| < 1 and h;(U;) by the condition (z| > 1, and think of the gluing
operation as happening along S! x D?, where S! is given by |z| = 1, according to the
map (z, w) — (z~}, wz~1). This is the map describing the manifold E;.

As a complex manifold, CP? comes with a canonical orientation. More careful
analysis shows that in fact E| is diffeomorphic via an orientation preserving diffeomor-

phism to 7(3—Pz \ D* where TP’ stands for the complex projective plane with reversed
orientation, and that E_; = CP2 \ D*. In short, the'results of the last two examples
can be formulated as in Figure 2.16.

O O ©

CP>\ D* CP2\ D* .

Figure 2.16



